

WHAT YOU NEED TO KNOW ABOUT WIRE ROPES

- Safety
- Inspection and typical damages
- Discard criteria

Laura Lombardi, Managing Director, Usha Martin Italia

GLOBAL R&D CENTRE

USHA MARTIN ITALIA

ITAL

- Technical department of Usha Martin Group, Global Design Centre for all Usha divisions
- Responsible for technical assistance: evaluation of customer concept design of new equipment, training for customers about rope properties and managing of special tests
- Active part of the most important International committees (CEN, IMCA, OIPEEC, OITAF, IABSE), taking care of technical and regulations workgroups

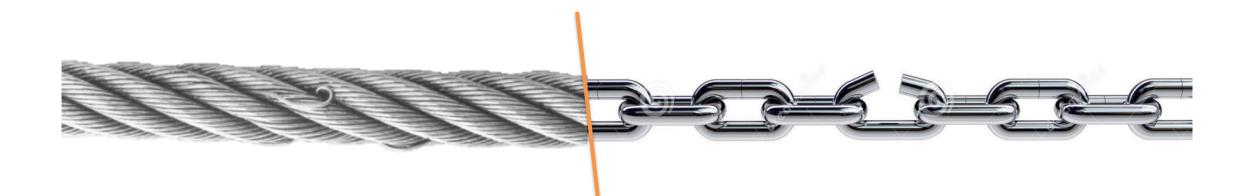
GLOBAL R&D CENTRE

USHA MARTIN ITALIA LABORATORY

- Fatigue tests up to 100 mm rope diameter TAL SEM and digital microscope analysis
 - Wire break, elongation and torsions tests
 - Stiffness, torque and rotation tests
 - Post retirement inspection and rope dismantling
 - Grease assessment and compatibility tests

<u> m</u>usha martin

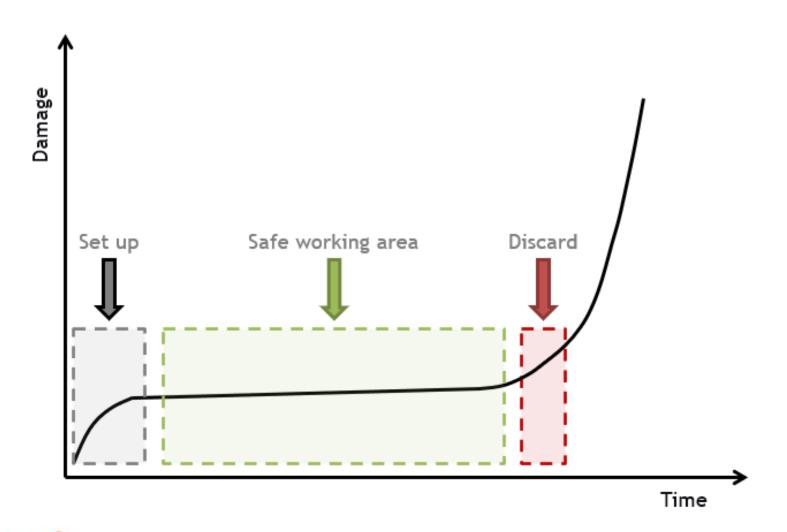
Are ropes safe?


Private and Confidential, property of Usha Martin Italia

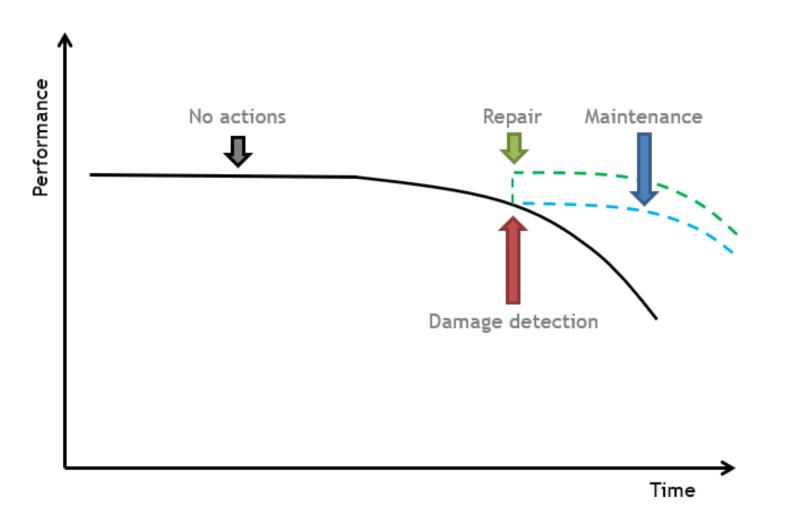
2.

3.

Wire ropes are safety components


- **1.** Ropes are redundant One single break does not affect rope integrity
 - Issues are detectable Inspection gives indications about rope status
 - Damage is progressive A rope will <u>not</u> break without any notice

Evolution of rope damage



Evolution of rope damage

The importance of maintenance

Wire rope inspection and typical damages

Clearly it's the rope's fault...

Private and Confidential, property of Usha Martin Italia

WIRE ROPE INSPECTION

Type of inspections

- Visual Inspection (VI): non-destructive test of the state of a component by visual means only, possibly taking into account particular circumstances
- Magnetic Rope Testing (MRT): method of testing based on the detection of the magnetic flux leakage of a magnetized rope
- Optical Inspection device (OI): instrumentation designed to acquire and record images of the surface of a rope

WIRE ROPE INSPECTION

Where, what, when

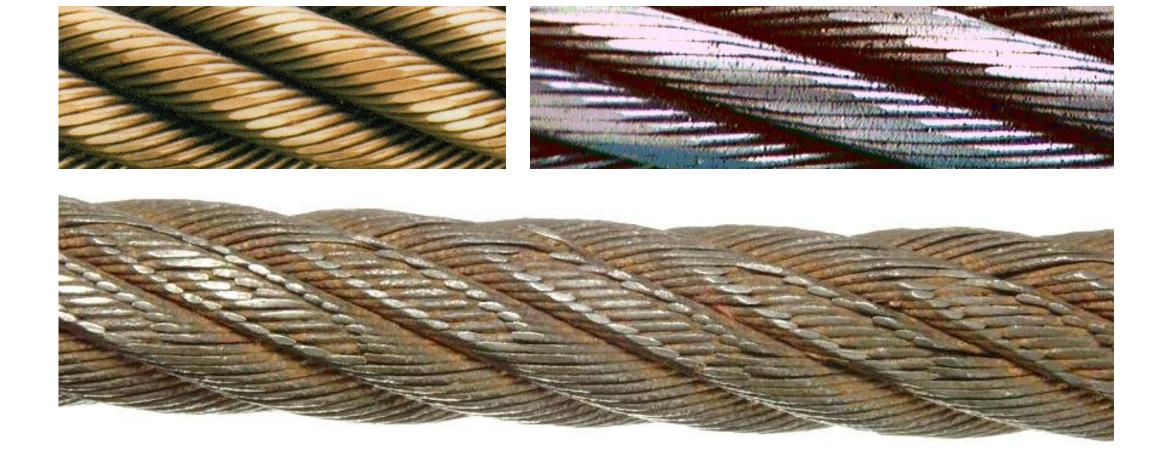
- Where
 - Drum
 - Main reeving elements (block, sheaves, rollers etc.)
 - End connections
 - Areas subjected to specific stress, wear or other criticalities
- What
 - Diameter and lay length
 - Lubrication and corrosion level
 - Presence of external damages / abrasions, broken wires, loosen strands, etc.
 - Presence of permanent deformations and anomalies
- When
 - Periodically
 - On a special/extraordinary basis

Corrosion

Corrosion

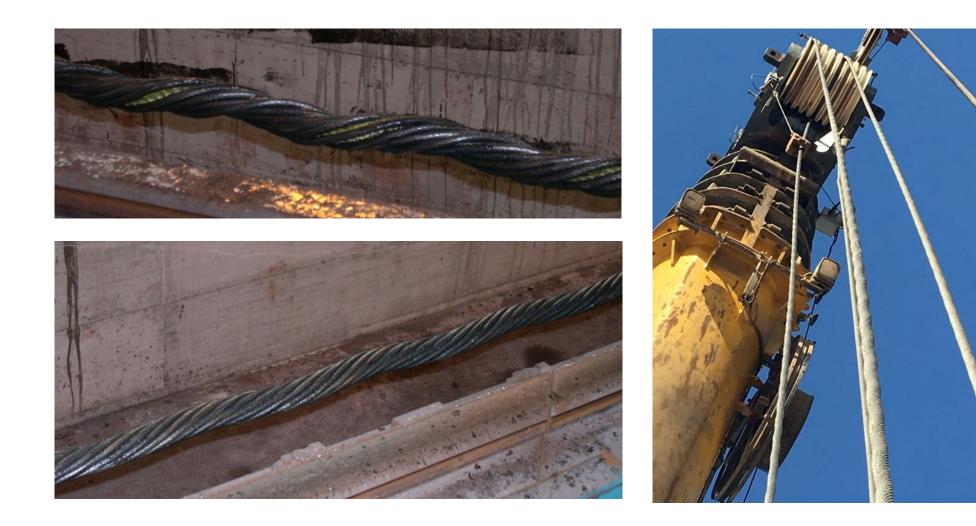

<u> <u> m</u>usha martin</u>

Internal corrosion



External wear

Core damage



Induced rotation - birdcage

Waviness

Spooling issues and cut in

Private and Confidential, property of Usha Martin Italia

Spooling issues and squeezing

Fatigue

Very localized fatigue?

Wire rope discard criteria

Private and Confidential, property of Usha Martin Italia

Root cause analysis

- Defect
- Misuse, accidents
- Fatigue

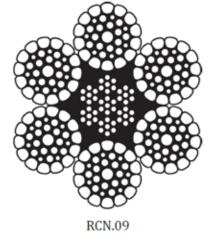
Modes of deterioration

Mode of deterioration	Assessment method			
Number of visible broken wires (including those which are randomly distributed, localized groupings, valley wire breaks and those that are at, or in the vicinity of, the termination)				
Loss of metallic area caused by broken wires	Visual, MRT			
Decrease in rope diameter (resulting from external wear/abrasion, internal wear and core deterioration)	By measurement			
Loss of metallic area caused by mechanism other than broken wires e.g. corrosion, wear, etc.	Visual, MRT			
Fracture of strand(s)	Visual			
Corrosion (external, internal and fretting)	Visual, MRT			
Deformation	Visual and by measurement (wave only)			
Mechanical damage	Visual			
Heat damage (including electric arcing)	Visual			

Discard criteria – visible broken wires

	Nature of visible broken wire	Discard criteria
1	Wire breaks occurring randomly in sections of rope which run through one or more steel sheaves and spool on and off the drum when single-layer spooling or occurring at sections of rope which are coincident with cross-over zones when multi-layer spooling ^a	
2	Localized grouping of wire breaks in sections of rope which do not spool on and off the drum	If grouping is concentrated in one or two neighbouring strands it might be necessary to discard the rope, even if the number is lower than the values over a length of $6d$, which are given in <u>Tables 3</u> and <u>4</u> .
3	Valley wire breaks ^b	Two or more wire breaks in a rope lay length (ap- proximately equivalent to a length of 6 <i>d</i>)
4	Wire breaks at a termination	Two or more wire breaks

As a consequence of shipping, storage, installation and manufacturing, an individual wire can be broken. As such, isolated wire breaks are not attributed to deterioration resulting from in-service operation, such as bending fatigue on which the values in <u>Tables 3</u> and <u>4</u> are largely based; they would not normally be counted when inspecting the rope for broken wires. Their existence, however, if discovered, should be recorded, as this can assist future inspections. The competent person shall take this factor into account when carrying out a periodic examination. See <u>Figure 8</u>.



RCN – Rope Category Number

				Number	r of visible b	roken oute	r wires ^b	
	Rope category number (RCN)	Total number of load-bearing wires in the outer layer of strands in the rope ^a	Sections of rope working in steel sheaves and/or spooling on a single-layer drum (wire breaks randomly distributed) Classes M1 to M4 (ISO 4301-1:1986) or class unknown ^d				Sections of rope spooling on a multi-layer drum ^c All classes	
	(see Annex H)	n	Ordina	ary lay	Lang lay		Ordinary and Lang lay	
	,		Over a length of 6 <i>d</i> ^e	Over a length of 30 <i>d</i> ^e	Over a length of 6 <i>d</i> ^e	Over a length of 30d e	Over a length of 6d e	Over a length of 30 <i>d</i> ^e
	01 n ≤ 50		2	4	1	2	4	8
	02	$51 \le n \le 75$	3	6	2	3	6	12
	03	$76 \le n \le 100$	4	8	2	4	8	16
	04	$101 \le n \le 120$	5	10	2	5	10	20
	05	$121 \le n \le 140$	6	11	3	6	12	22
1	06	$141 \le n \le 160$	6	13	3	6	12	26
	07	$161 \le n \le 180$	7	14	4	7	14	28
	08	$181 \le n \le 200$	0	16	4	8	16	32
	09	$201 \le n \le 220$	9	18	4	9	18	36
٦	10	$221 \le n \le 240$	10	19	5	10	20	38
	11	$241 \le n \le 260$	10	21	5	10	20	42
	12	$261 \le n \le 280$	11	22	6	11	22	44
	13	$281 \le n \le 300$	12	24	6	12	24	48
		<i>n</i> > 300	0,04 × n	0,08 × n	0,02 × n	0,04 × n	0,08 × n	0,16 × n

NOTE Ropes having outer strands of Seale construction where the number of wires in each strand is 19 or less (e.g. 6 × 19 Seale) are placed in this table two rows above that row in which the construction would normally be placed based on the number of load bearing wires in the outer layer of strands.

a For the purposes of this document, filler wires are not regarded as load-bearing wires and are not included in the values of n. Construction: 6 × K36WS-IWRC Single-layer rope with compacted strands

6 x 26 = 156 -> RCN 06 - 6 x 31 = 186 -> RCN 08 6 x 36 = 216 -> RCN 09 **ISO 4309**

Discard criteria – decrease in diameter

Table 5 — Uniform decrease in diameter signalling discard of rope — Rope spooling on a singlelayer drum and/or running through a steel sheave

	Uniform decrease in diameter	Severity rating		
Rope type	(expressed as percentage of nominal diameter)	Description	Percentage, %	
	Less than 6 %	—	0	
	6~% and over but less than 7 $%$	Slight	20	
Single-layer rope	7 % and over but less than 8 %	Medium	40	
with fibre core	8 % and over but less than 9 %	High	60	
	9~% and over but less than 10 $%$	Very high	80	
	10 % and over	Discard	100	
	Less than 3,5 %	_	0	
	3,5 % and over but less than 4,5 %	Slight	20	
Single-layer rope with steel core	4,5 % and over but less than 5,5 %	Medium	40	
or parallel-closed rope	5,5 % and over but less than 6,5 %	High	60	
	6,5 % and over but less than 7,5 %	Very high	80	
	7,5 % and over	Discard	100	
	Less than 1 %	—	0	
	1 % and over but less than 2 %	Slight	20	
Potation resistant rong	2 % and over but less than 3 %	Medium	40	
Rotation-resistant rope	3 % and over but less than 4 %	High	60	
	4 % and over but less than 5 %	Very high	80	
	5 % and over	Discard	100	

If there is an obvious local decrease in diameter, such as that caused by failure of a core or rope centre, the rope shall be discarded (for an example of a decrease associated with a sunken strand, see Figure B.5).

Discard criteria – corrosion

Type of corrosion	Condition	Severity rating		
External corrosion ^a	Signs of surface oxidation but can be wiped	Superficial — 0 %		
	clean	High — 60 %c		
	Wire surface rough to touch	Discard — 100 %		
	Wire surface heavily pitted and slack wires $^{\rm b}$			
Internal corrosion ^d	Obvious visible signs of internal corrosion	Discard — 100 %		
	— i.e. corrosion debris exuding from the valleys between the outer strands ^e	or		
		if deemed practicable by the compe- tent person, internal examination		
		in accordance with the procedure described in <u>6.3</u> or <u>Annex C</u>		
Fretting corrosion	The process of fretting involves the removal of fine particles of steel from the wires due to dry wires and strands constantly rubbing together and then oxidizing and creating internal cor- rosion debris, which manifests itself as a dry powder, similar to a red rouge.	Evidence of such a characteristic should be further investigated and if		

ISO 4309

Severity matrix

December 1	Severi	Severity rating of individual modes of deterioration $\%$					i Commont	
Example	Wire Visual	breaks MRT LF	Decrease in diameter ^a	Corro External	osion MRT LMA	rating %	Comment	
1	0	_	20	20	_	40	Safe to continue	
2	20	_	20	0	_	40	Safe to continue	
3	20	_	20	20		60	Safe to continue	
4	40	_	20	20	_	80	Inspect more fre- quently	
5	40	—	40	0	_	80	Inspect more fre- quently	Different mix, different outcomes
6	0	-	80	0	-	80	Consider discard if reduction in diame- ter is mainly attribut- ed to external wear	
7	60	-	0	0	_	60	Inspect (particularly for broken wires) more frequently	
8	60	_	20	0	_	80	Inspect more fre- quently (particularly for broken wires) and prepare for re- placement	
9	20*	20	20	20*	20	60	Safe to continue	
10	10	30*	20	20*	20	70	Inspect more fre- quently	
11	20*	20	20	10	30*	70	Inspect more fre- quently	
12	10	30*	20	10	30*	80	Inspect more fre- quently	
13	0	30	20	0	30*	80	Inspect more fre- quently	
Figures wit	th asterisk,	e.g. 30*, indi	cate which of the	two criteria	are to be co	nsidered.		
a On	ly taken into	account when	n rope travels throu	ugh steel shea	ve and/or spo	ols on to sing	le-layer drum.	

What you know NOW about wire ropes

- Safety
- Inspection and typical damages
- Discard criteria



THANKS BY USHA MARTIN ITALIA

